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Abstract

We investigate the frame properties and closedness for the shift invariant
space

Vo(®) = {323 dili)bi(- = 5) : (di(§))jeqe € &}, 1< p < o0,

=1 jcZd

We derive necessary and sufficient conditions for an indexed family {¢;(- — j) :
1 <i<rj € Z% to constitute a p-frame for V,,(®), and to generate a closed shift
invariant subspace of L?. A function in the LP-closure of V,,(®) is not necessarily
generated by /P coefficients. Hence we often hope that V,(®) itself is closed,
i.e., a Banach space. For p # 2, this issue is complicated, but we show that
under the appropriate conditions on the frame vectors, there is an equivalence
between the concept of p-frames, Banach frames, and the closedness of the space
they generate. The relation between a function f € V,(®) and the coefficients
of its representations is neither obvious, nor unique, in general. For the case of
p-frames, we are in the context of normed linear spaces, but we are still able
to give a characterization of p-frames in terms of the equivalence between the
norm of f and an #P-norm related to its representations. A Banach frame does
not have a dual Banach frame in general, however, for the shift invariant spaces
Vp(®), dual Banach frames exist and can be constructed.
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1 Introduction

A frame for a Hilbert space H is an indexed family of vectors {gx}rea C H that

can be used to represent, in a stable way, any vector f € H as a linear combination

f = ¥ dMNgy with D = (d()\)) € ¢*(A), where A is a countable index set. In
AEA

particular, any vector f € H can be represented as

f=2_(f.9:) (1.1)

AEA

where {g)}ren C H is any dual frame. Frames were introduced by Duffin and Schaeffer
in the context of nonharmonic Fourier series [14]. The relatively recent interest in
frame theory is due to its use in wavelet theory, time frequency analysis, and sampling
theory (see for example [2, 5, 6, 8, 9, 10, 11, 12, 15, 20, 21, 26, 27, 28, 29]). In these
contexts, the frames {g\}rea C H have some additional structure. Specifically, in
wavelet theory {gy}aea are of the form {¢ ((z — nb)/ma)}nez+ neze € L*(R?), in time
frequency analysis the frames are of the form {e"®¢(x — na)}mnyezzd C L*(RY), and
in sampling theory they are of the form {¢(x — na)},cze C L*(R?), generating shift
invariant spaces. While the concept of Riesz basis has been generalized to L” spaces
and studied in the context of shift invariant spaces [23, 24], the systematic study of
frames in Banach spaces is relatively recent [9, 16, 19], and we are not aware of any
investigation of frames in shift invariant subspaces of LP (p # 2). Aside from their
theoretical appeal, frames in LP spaces and other Banach function spaces are effective
tools for modeling a variety of natural signals and images [13, 26]. They are also used
in the numerical computation of integral and differential equations. Hence, one goal
of this paper is to study frames for certain shift invariant subspaces of L” which are
generated by finitely many functions. Specifically, we investigate frames of the form
{¢i(- — )+ j € Z41 < i < r} C LP, that we call p-frames, for the spaces V,(®)
generated by linear combinations of the frame vectors using ¢? coefficient sequences.
Under certain conditions on the decay at infinity for ¢;,1 < ¢ < r, we derive necessary
and sufficient conditions for the indexed family {¢;(- —j) : 1 < i < r,j € Z%} to
constitute a p-frame, and to generate a shift invariant, closed subspace of LP. For the
case p = 2, this problem has been considered by [6, 7, 25, 28].

Let V5(®) be the space of finite linear combination of integer translates of ¢;, 1 <
i <r,and let Vj,(®) be the L? closure of V5(®). The space V;,(®) has been studied
by [6, 7, 22, 23, 28]. Obviously, we have V4(®) C V(@) C Vp,(®). We remark
that a function f in V;,(®) is not necessarily generated by ¢* coefficients. So the

2



closedness of the shift invariant spaces V,(®) is an important issue in some applications.
Hence we often hope that V,(®) itself is closed, i.e., a Banach space. In that case,
V,(®) = V;,(®). For the case p = 2, this problem has been considered by many
investigators, see for example [4]. In the case of p # 2, this issue is more complicated
since L? is not a Hilbert space and the Parseval identity is no longer applicable. But we
show that under the appropriate conditions on the frame vectors, there is an equivalence
between the concept of p-frames, Banach frames (with respect to /#), and the closedness
of the space they generate.

For the vectors {gx}aea of a frame, the relation between a function f = > d(\)gx
AEA

and the coefficients of D = (d(\))aea is not obvious. In Hilbert spaces, it is well known
that the coefficients sequence (d(\)) = ({f, gr)) obtained by using the Duffin-Schaeffer
dual frame {g)}rca has minimal size [14]. Moreover, the ¢*-norm of D is equivalent
to the norm of f. For the case of p-frames, we are in the context of Banach spaces,
but we are still able to give a characterization of p-frames in terms of the equivalence
between inf {>7_, |[|[Dillee : f =211 ¢ ¥ D;} and the LP-norm of f. Actually, when
{¢i(- — ) : 1 < i <rje Z% is a p-frame for V,(®), we construct functions v,
1 <i < r, independent of p with ¢; € V;(®) C V,(®) such that

fo= iZ(f,m(-—jm(-—j)

=1 jcZd

= Z Z (f,0i(- —iNUi(- —J) Y fe V(D).
=1 jezd
Moreover, V,(®) = V,(¥) and the family {¢;(- —j) : 1 < i < r,j € Z%} is also a
p-frame for V,(®). So the family {¢;(- —j) : 1 < i <r,j € Z%} can be thought of as
a “dual Banach frame”.

The paper is organized as follows: Section 2 will introduce some notation, defini-
tions and preliminaries. We present the main theorem and some of its corollaries in
Section 3. Several technical lemmas are given in Section 4. In particular, Lemma 1
gives some equivalent relations to the condition (iii) of Theorem 1. Lemma 2 provides
a localization technique in Fourier domain which is essential to the proofs of our main
theorem, and Lemma 3 is crucial for two key estimates in the proofs of (i) = (iii) and
(i) = (iii) of Theorem 1. The localization technique in Lemma 2 and the estimate
in Lemma 3 are not necessary if we restrict ourselves to the case p = 2. All the proofs
are gathered in Section 5.



2 Notation, Definitions and Preliminaries

2.1 Periodic Distributions

We say that T is a 27-periodic distribution if it is a tempered distribution on R?
and T = T(- + 2j7) for all j € Z¢. A 2m-periodic distribution can also be thought of
as a continuous linear functional on the space of all 27-periodic C* functions on RY.

For any 27-periodic distribution 7', there exist an integer Ny and a positive constant
C such that

THI<C Y DIz (2.1)

|| <No

for any 27-periodic C* function f on R?. Note that e %/¢ is a 27-periodic C* function
on R? for any j € Z%. We define T'(e¥") as the j-th Fourier coefficient of T and formally
write T = 3 jcza T(e)e™"¢. Tt follows from (2.1) that there exists a polynomial P
such that |T'(e”")| < P(j) for all j € Z%. Conversely for any sequence D = {d(j)};czq
dominated by some polynomial, F(D) = Y czad(j)e 7" is a 27-periodic distribution.
For a 27-periodic distribution 7', we say that 7" is supported in A +27Z if T(f) =0
for any 27-periodic C™ function f supported in R\ (A + 27Z%).

2.2 Sequence Spaces

For two sequences Dy = (d(j))jeze € °* and Dy = (d2(j));jeze € P* with 1/p; +
1/ps > 1, define their convolution D; x Dy as

DyxDy(j) = 3 di(j —j)da(j") ¥ jeZC

j’EZd

It is easy to check that Dy * Dy € ¢" with 1/r = 1/p; + 1/ps — 1 for all D; € /' and
Dy € (P2, Denote by WCP, 1 < p < oo, the space of all 2r-periodic distributions
with their sequences of Fourier coefficients in 2. For p = 1, WC' is simply the
Wiener class WC. For a 27-periodic distribution T € WCP?, define ||T||» to be the
? norm of its sequence of Fourier coefficients. For a vector T = (T,...,T,)" of 27-
periodic distributions, we say that 7" € WCP if T; € WC?,1 < ¢ < r, and define
|||l = X1 || Ti||». For 27m-periodic distributions 77 and 75 with their sequences of
Fourier coefficients Dy and D, respectively, define their product 7775 as the 2r-periodic
distribution with its sequence of Fourier coefficients given by Dy x D if it is well defined.
Thus the product of two 27-periodic distributions 77 € WCP' and Ty, € WCP? is well
defined and belongs to WC" when 1/r = 1/p;+1/ps—1 > 0. In particular, the product
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between a 2m-periodic distribution in YWWC? and a 2w-periodic function in the Wiener
class WC still belongs to WCP.

2.3 Function Spaces
Let

Lrr — {f ||f||£p:(/[ (Z|f(x+j)|)pdx)l/p<oo} if 1<p<oo,
jezd

0,1]¢

£ = A{f: | fllex= sup 3 |f(z+j)<oo} if p=oo,

z€[0,1]¢ jezd

and
W={f: Iflw=3 sup |f(z+))|<oc}.

jezd z€[0,1]¢
For F = (fi,..., f)T, we set |F|lx = Xi_, || fillx and say that F € X if |[|F||x < oo,
where X = LP,LP or W. Here A" denotes the transpose of A. Obviously we have
W C L>® C L9C LP C LP, where 1 < p < g < oo (for instance see [2, 24| for more
properties). For p = 1, we also have that £' = L'. For any 1 < p < oo, f € L? and
g € L, by straightforward computation we have

I{ [, r@gt—jrz}

Define the Fourier transform f of an integrable function f by f(€) = [pa f(2)e “¢da
and that of a vector-valued tempered distribution by the usual interpretation. Denote
the inverse Fourier transform of f by F!(f). By the Riemann-Lebesgue Lemma, the
Fourier transform of an integrable function is continuous. Hence the Fourier transform
of an LP function, 1 < p < 00, is continuous.

1-1 1
o < I llzollgll gl 2 (2:2)

2.4 Semi-convolution

For any sequence D = (d(j))jeze € 7 and f € LP, define their semi-convolution
f* Dby f+D=73,.2:d(j)f(- —j) (For p = oo, the convergence of the series is
pointwise convergence, but not L* convergence). It is not difficult to check that f+’
is a continuous map from P to L, and also from /' to LP if f € LP, 1 < p < 00, and
it is a continuous map from ¢! to W if f € W. Indeed, we have

1 %" Dlle < I Dlles [l 1] o, (2.3)
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1F %" Dllce < I Dllex[| £l v (2.4)

and
1+ Dllw < [IDllex [ £ llw- (2.5)

2.5 Shift Invariant Space
For ® = (¢1,...,¢,)T € LP, let

%(@):{Z@'*'Dii Dieé”,lgigr}.
i—1

It follows from (2.3) that V,,(®) is a shift invariant linear subspace of L? for 1 < p < 0.
Here the shift invariance of a linear space V' means that ¢ € V implies g(- —j) € V for
all j € Z. The space V,(®) is said to be the shift invariant space generated by ®.

2.6 p-frames and Banach frames

Let 1 < p < o0, A be a countable set, and let B be a normed linear space and B* be
its dual. We say that {gy: A € A} C B* is a p-frame for B if the map T defined by

T:B> fr—{(f,9)}xrer € #(N),

is both bounded and bounded below, i.e., there exists a positive constant C' such that

Cfle < (S HhHo) " <Cliflls VieB (2.6)

AEA

for 1 < p < o0, and
C7YIflls < sup [(fo0l <Cllflls VfeB (2.7)

for p = o0.

A Banach frame (with respect to () is a p-frame with a bounded left inverse R of
the operator T' [16, p. 148].

For Hilbert spaces, (2.6) or (2.7) guarantees the existence of a reconstruction opera-
tor R that allows the reconstruction of a function f € B from the sequence {(f, gx)}rea-
However, for Banach spaces the operator R does not exist in general. Thus, for Banach
spaces, the existence of a reconstruction operator R is included as part of the definition
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of Banach frames (see [9, 16, 19]). However, in the definition of p-frame above, the
existence of a reconstruction operator is not required. Instead for finitely generated
shift invariant spaces V,(®) considered in this paper, the p-frame condition (2.6), or
(2.7), is sufficient to prove the existence of a reconstruction operator R. Therefore a
p-frame for V,,(®) is a Banach frame (the converse is obvious).

2.7 p-Riesz Basis

Let 1 < p < oo, B a normed linear space and A a countable index set. We say that a
collection {g) : A € A} C B is a p-Riesz basis in B if the map defined by

EP(A) > (CA))\ — Z c\gr € B
AEA

is both bounded and bounded below, i.e., there exists a positive constant C' such that

C M eller < [ exan||,, < Clleller Ve = (ex)ren € (). (2.8)
AEA

For p = 2, this definition is consistent with the standard definition of a Riesz ba-
sis for the closed span of its elements. Definition (2.8) implies that the space V, =

{ S eagy iCcE E”(A)} is a complete subspace of B. Thus, V), is a Banach space even
AEA

though B may not be complete. In fact, Definition (2.8) implies that ¢’(A) and V,, are
isomorphic Banach spaces. Obviously, a p-Riesz basis is unconditional, i.e., the sum in
the middle term of (2.8) is independent of the order in which the sum is performed.

2.8 Bracket Product

For any functions ® = (¢1,...,¢,)7 and ¥ = (¢,...,0,)T such that ¢;(€)dy(€) is
integrable for any 1 <i <r and 1 <i' <s, define an r X s matrix

[, ¥](¢ ( > Gi(€ + 2jm)du (€ + 2j7r))1<i<r 1<i'<s’
jez SrEniErs

Observe that for any ¢, € £2, we have

> [ e = ldr< [ 5 16 =Bl T W = i)ldr < 9]l

JEZ  pezd jezd

Thus for any @, ¥ € L%, Poisson’s summation formula implies that all entries of
(@, U](£) belong to the Wiener class, and are continuous.
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2.9 Rank of a r x co Matrix

For w(j) = (wi(4),...,w:(5))" € C" satisfying >7_; > jcza |wi(j)]* < oo, define an
r X oo matrix G by
G = (w(j))jeza- (2.9)

For the matrix G in (2.9), define its column rank as the maximal number of linearly
independent columns (as vectors in C") of GG, and its row rank as the maximal number
of linearly independent rows (as vectors in £%) of G. Tt is obvious that the column rank
and the row rank of G are equal, which is denoted by rank GG. For the r x oo matrix
G in (2.9), define the 7 x r matrix GGT = (Zjezd w;(J)wy (])) . It can be shown

1<i i <r
that o
rank G = rank GG (2.10)

Recall that [®, ®]() is continuous for any ® € £2. Then by (2.10),
Oy = {€ € R?: rank (B(& + 2k7))yeze > N} (2.11)

is an open set for any N > 0 and ® € £2.

3 Main Results

In this paper, we shall prove

Theorem 1 Let ® = (¢y,...,0,)" € L if 1 <p < oo, and® € W if p=1,00. Then
the following statements are equivalent to each other.

(1) V,(®) is closed in LP.
(ii) {pi(-—j): j€Z%1<i<r}isap-frame for V,(®), i.e., there exists a positive
constant A (depending on ® and p) such that

< Alfllee YV FeVL(®). (31)

o

Al < z I([ r@éte =),

(iii) There exists a positive constant C' such that

=

CU[®, ](€) < [, B](E)[P, D|(E)T < C[®,](€) V& € [~m, 7]



(iv) There ezists a positive constant B (depending on ® and p) such that

B! » < inf Dill» < B v YV f eV, (D). 3.2
£z f:z;ﬂ@m;” e I flz f eV, (®) (3.2)

(v) There exists U = (¢1,...,0.)" € L if 1 <p < oo, and ¥ € W if p = 1,00,

such that
P23 T U= o= =3 T 6L =0) Y] VD)

(3.3)

Remark 1 From (v) of Theorem 1 it follows that V,(¥) = V,(®). This together with
the implication (v) = (ii) in Theorem 1 leads to the conclusion that {¢;(- —j): 1 <
i <r,j € Z% is also a p-frame for V,,(¥) = V,(®). Thus, {;(-—5): 1 <i<r,je Z%}
can be thought of as a “dual p-frame” of the family {¢;(- —j): 1 <i < r,j € Z¢}.
Hence a p-frame for V,(®) is a Banach frame (for definitions of Banach frames see
[9, 16, 19)).

Remark 2 The functions ¢;, 1 < i < r, in (v) of Theorem 1 belong to Vi (®) C V,(P)
and are independent of p, 1 < p < co. In fact, from the proof of (v) in Theorem 1, we
have

P = XT: > cu()da(- —J)

i'=1jeZd
for some ¢! sequences {c;#(j) : j € Z%}, 1 <4, < r, independent of p.

Remark 3 Let ¢;,1 <i <r, be as in (v) of Theorem 1. Define an operator P on L?
by

Pf=3> (i = i))oi(- = j)-
i=1 jcZd
Then P is a bounded operator from L? to V,(®), and Pf = f for all f € V,(®).
Therefore P is a bounded projection operator. Let

W={fel’: Pf=0}

Then W is a closed linear subspace of L?, and LP = V,(®) @ . In other words, V,(®)
is complemented in LP, with W as a complement.



Remark 4 It is easy to construct examples of shift invariant spaces V,(®) that are
not closed. For example, if ® = x(o,1) — X[1,27 Where xp is the characteristic function of
a set E, then V,(®) is not closed.

Note that the condition (iii) in Theorem 1 is independent of p. Therefore, the
p-frame property ((ii) and (iv) in Theorem 1) and closedness property ((i) in Theorem
1) of V,(®) is independent of p.

Corollary 1 Let ® = (¢y,...,0.)" € W, and 1 < py < o00.

(i) If {ps(- — j) : 7 €Z41<i<r}isapo-frame for Vo, (®), then {¢;(- —j): j €
2?1 <i<r}is ap-frame for V,(®) for any 1 < p < co.

(11) If Vo (®) is closed in LP°, then V,(®) is closed in LP for any 1 < p < oo.

(1ii) If (3.2) holds for py, then (3.2) holds for any 1 < p < oo.

Note that the p-Riesz basis for the shift invariant spaces V,(®) can be characterized
in the following way (see for instance [24]).

Proposition 1 Let 1 < p < oo and ® be as in Theorem 1. Then {¢;(-—j) : j €
Z% 1 < i <r} is a p-Riesz basis for V,(®) if and only if there exists a positive constant
C such that

C 'L < [8,9](¢) <CL V¢ [-ma), (3.4)

where I. denotes the r X r identity matriz.

Then as a consequence of Theorem 1 and Proposition 1, we obtain the expected result
below.

Corollary 2 Let ® = (¢y,...,0,)7 € L if 1 < p < oo, and ® € W if p = 1. If
{¢i(- —7) : j €21 <i<r}isap-Riesz basis for Vy(®), then {¢;(- —j) : j €
271 <i<r}is ap-frame for V,(®).

As further consequences of Theorem 1 and Proposition 1, a p-frame for V,(®) is a
p-Riesz basis for V,(®) if we impose more restrictions on ®. Actually the additional
condition on ® is that the matrix [®, ®](¢) is invertible for some &. Obviously, this
condition always holds if r = 1 (except for the trivial case ® = 0).
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Corollary 3 Let ® = (¢y,....,¢.)T € L® if 1 <p< oo, and ® € W if p=1. Assume
that {¢i(- —j4): j € Z%1 < i <r} is a p-frame for Vy(®).

(i) If there exists a & € [—m,7)? such that the r x r matriz [®, ®|(&) is invertible,
then {¢;(-— 7)) : j € 2% 1 <i <r} is a p-Riesz basis for V,(®).

(it) If r =1 and ¢y # 0, then {¢1(- — j) : j € Z%} is a p-Riesz basis for V,(¢1).

Part (ii) of Corollary 3 states that if ¢; is regular and r = 1, then it is not possible
to construct frames that are not Riesz bases. For example if |¢;| < M < oo and
has compact support, or if ¢; is continuous and decays faster than |z|~2 at infinity,
then any frame of V,(¢;) is also a Riesz basis of V,(¢;). Thus, for r = 1, frames of
V,(¢1) that are not Riesz bases must be generated by ¢, that are not regular, e.g., if ¢,
has compact support, then ¢; must have an infinite singularity, or if ¢; is continuous
with global support, then ¢ must have slow decay. For example for p = 2 and r = 1,
Benedetto and Li construct frames that are not Riesz bases [6]. However, in their
construction the generator ¢; has slow decay at infinity.

In view of Corollary 2, we may consider the converse problem: Given a p-frame
{pi(-—7):1<i<rje Zd} for V,(®), can we find ¢;, 1 < i < s, such that the closed
span of {¢;(-—j): 1<i<s,j€ Zd} using (P coefficient sequences is V,(®) and such
that {¢;(- —j) : 1 <i < s,5 € Z} is a p-Riesz basis for V,(®).

Gryen )T € L if 1 < p < o0, and ® € W if p = 1.
Assume that {¢;(- — 7) : g <r,j € Z% is a p-frame for V,(®). Then there exist
le,and&):(qzl,.. 'e £ if1 < p < oo, and ® € W if p = 1, such that
{di(- —j): 1<i<s,j€Z% is ap-Riesz basis for V,(®) and V,(®) = V,(®).

Conjecture Let & =

(¢
1
s

The assertion in the above conjecture is true under the additional assumption that
bi, 1 < i < r, are compactly supported bounded functions on R (see [22] for 1 < p < oo,
and [3] for 1 < p < oo with a completely different proof). We feel strongly that the
assertion of the above conjecture for higher dimensions would not be true.

Remark 5 We remark that the condition (iii) in Theorem 1 is different from the
following condition about quasi-stability in [7]:

(x)  There exists a positive constant C' such that

C7'L < [@,8](¢) <CI, VEeEQ,
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where

Q={¢€[-mn: Z glgi(§+27rj)gz§i(§ +271j) #£0, for somel <i<r}.

JEZI

Hence the p-frame property in this paper is different from the quasi-stability in [7]. For
instance, let ¢, ¢, be two compactly supported L? functions with their shifts being
orthonormal, and let ¢35 = ¢;(- — 1) — ¢o. Define ® = (¢, ¢z, ¢3)T. Then

o 1 0 e%
B8 =] 0 1 -1 ], ¢ere
et —1 2

By direct computation, for each & € R?, the eigenvalues of [@, @] (&) are 0,1 and 3.
Therefore Condition (iii) of Theorem 1 holds for ®, but Condition (x) is not true for
® since [@, P|(€) is not invertible for any & € [, 7]%.

Remark 6 We note that from the proof of Theorem 1 together with some modifica-
tions, we only need to assume that ® € £LP,1 < p < o0, for the equivalence between
(i) and (iv) in Theorem 1; ® € L2 N LP if 1 < p < oo and ® € W if p = oo for the
equivalence between (i) and (iii); and ® € L* if 1 < p < oo and ® € Wif p=1 for
the equivalence between (ii) and (iii).

4 Technical Lemmas

The first lemma will give some equivalent relations of the condition (iii) of Theorem
1. Corresponding results involving Riesz bases can be found in [1, 7, 17, 18, 24, 30].

Lemma 1 Let ® = (¢1,...,¢.) € L2 Then the following statements are equivalent
to each other.

(i) rank ((i)(ﬁ + 2j7r)) ga 18 @ constant function on R
j

(ii) rank [®, ®(€) is a constant function on RY.

(iii) There exists a positive constant C' independent of & such that

CU[®, ](€) < [, B](E)[P, D|(E)T < C[®,](€) V& € [~m, ]
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Proof of Lemma 1 Obviously the equivalence of (i) and (ii) follows from (2.10),
where G = (®(¢ + 2j7))jeze- Now we start to prove the equivalence of (ii) and (iii).
Let \;(€),1 < i < r, be all eigenvalues of [®, ®](€) ordered such that A (€) > Ay(€) >
... > M (€). Note that [®, B(€) is a positive semi-definite matrix. Thus A;(€) > 0 for
all i = 1,...,r and there exists an r x r matrix A(¢) such that A({)TA(§) = I, the
r X r identity matrix, and

AE)T[D, D)(£) A(€) = diag(Ai(€), -y Ar(E))- (4.1)

Recall that [®, ®|(€) is in the Wiener class, since ® € £2. Then );(€) are continuous
and 27-periodic for all 1 < i < 7. Denote the rank of [®, ®|(€) by ki (€).

Assume that (ii) holds. Then k;(§) is a constant, which is denoted by k;. Thus
Ai(€) > 0 forall ¢ € R and 1 < i < ky, and

MN(€)=0 VEERY and ky+1<i<r (4.2)

Hence it follows from the continuity and periodicity of A;(§) that there exists a positive
constant C' such that

CH< N <O VEERY and 1 <i<ky. (4.3)
Combining (4.1) — (4.3), we get (iii).
Now assume that (iii) holds. Then by (4.1),
CTIN(E) S A(6)? <ON(€) YV1<i<r and ¢eR
Thus either );(€) = 0 or C~! < \;(€) < C. Hence rank[®, ®](€) is a constant by the
continuity and periodicity of A;(§). This completes the proof of (ii) <= (iii). O

The next lemma and the technique introduced in its proof are crucial for our sub-
sequent discussion. In Fourier domain, it allows us to replace locally the generator ®
of size r by a local generator ¥, , of size k.

Lemma 2 Let ® € L? satisfy rank(@(g + 2k7r))kezd = ko > 1 for all £ € RY. Then

there exist a finite index set A, ny € [—7,7]¢, 0 < 6y < 1/4, nonsingular 27 -periodic r x
r matriz P\(£) with all entries in the Wiener class and Ky C Z® with cardinality(K)) =
ko for all A € A, having the following properties:

(1)
UAGAB(T])\,(S)\/Q) D) [—7T,7T]d, (44)

where B(xg,8) denotes the open ball in R® with center xq and radius §;
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(i)

PA(§)®(€) = ( Vi) ) , £eRY and ) €A, (4.5)
20 (€)
where U, \ and Wy 5 are functions from R to C* and C™=* respectively satis-
fying ~
rank (¥y,(€ + 2/m))k% — ko V&€ B(n,26) (4.6)
and R
Uyn(§) =0 V&€ B(ny,86./5) + 21Z". (4.7)
Further there exist 2m-periodic C* functions hy(£), A € A, on R? such that
Yh(§=1 VEeR! (4.8)
AEA
and
supp ha(€) C B(ny, 6x/2) + 21Z°. (4.9)

Proof For any 7y € [—7, 7], there exist a nonsingular r x r matrix Py, a ko x ko
nonsingular matrix A4,, and K,, C Z% with cardinality(K,,) = ko such that

Py (®(0 + 2k7r))keKn0 = ( A(;?O ) :

Write

Py (@(f + 2k7r))kem,0 - ( AWO};;(];)I(S) ) ‘

By the continuity of ®, R, (£) and R,(€) are continuous, and Ry (1) = 0 and Ry(ny) =
0. Thus supge g ,45) 1L (E)|| + [[R2(£)]] is sufficiently small for any sufficiently small
positive §. Let H(z) be a nonnegative C* function on R such that

(1, if|a] < 4/5,
Hw) = { 0, if|z]>1. (4.10)

Then A,, + H((£ —n0)/46)R1(€) is a ko X ko nonsingular matrix for all £ € R? when
0 is chosen sufficiently small.

For ¢ € RY, set
2 —
() = Ay + X H(ETET M ) Ru(€ +24m)

JEZL
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and _
(@) = 3 B Ry (e 4 2m),

JEZ

Then a,,(&) is 2r-periodic and nonsingular when ¢ is chosen sufficiently small. Note
that the ¢'-norms of the sequences of the Fourier coefficients of (&) and 3,,(¢) are
dominated by

C+C L |FH(HE/@0)D) ()] +C X |7 (H(/(20)8)()]
< Ol < 0,

where C'is a positive constant. This shows that all entries of a,,(£) and 3,,(£) belong
to the Wiener class.

Let

0 0 .
Pu© =Pt s iyt 0 ) P CER

Then P,,(€) is a 27-periodic nonsingular 7 x 7 matrix for any £ € R?, and all entries of
P,, (&) belong to the Wiener class. Note that (&) = A,, + R1(§) and 3,,(§) = Rs2(§)
for all € € B(ny,86/5). Thus

Poo(€)(B( +2km)) = ( At () ) ¥ € € B(1p,86/5), (4.11)

when 1/4 > 6 > 0 is chosen sufficiently small.

Define Wy ;0 = (Y11 - Vi) and Yoo = (Y201, Vaimor—ko) bY

Nin© ) p 1 ’
(36 ) = raoie, cere (1.2

Recall that all entries of P, (¢) belong to the Wiener class. Thus by (2.4), ¥y, € £
and Uy, € LP if & € LP. By (4.11) and (4.12), we have

Uy (€ +2kn) =0 V&€ B(n,86/5) and ke K,,. (4.13)
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Also for £ € B(n, 86/5), rank (A4,, + Ri(§)) = ko and

rank ( Ay + Ra() \ijl,no (& + 2k'T) )
0 \112,710 (§ + 2]{}’7{') k’GZd\K,,O

‘:I}l (6 + 2]{571') =
e k ~ o110 — k (D + 2k — k .
ran < T (€ + 2b7) ), ran ( (€ W))kezd 0

Thus Wy, (€ 4 2k'T) = 0 for all £ € B(no,86/5) and k' € Z4\K,,. This together with
(4.13) lead to ~
Wy (§) =0 V&€ B(n,8/5) + 2rZ*

Let 6,, be chosen such that 1 < 6, < 1/4, P,,(§) and A,y +H((§ —mno)/(46n,))R1(§)
as defined above are nonsingular for all ¢ € R?, and A, + R;(€) is nonsingular for
¢ € B(no,46,,). For the family {B(no,6,,/2) : m0 € [—7, 7|} of open balls covering
[—7, 7], there exists a finite index set A such that Uyep B(na, 6x/2) D [—, 7| by the
compactness of [—, 7]¢. For such a finite covering, the corresponding Py(¢), ¥, ) and
W, » constructed above satisfy the desired properties in Lemma 2. The existence of
the desired 27-periodic functions hy(€), A € A, follows easily from (4.4). O

The following result is about £ and W estimates of ¢ near a point & such that
d(&o + 2km) = 0 for all k € Z% This lemma is crucial to obtaining (5.6) and (5.19),
the key estimates in the proofs of (i) = (iii) and (ii) = (iii). We remark that for
p = 2, these estimates follow easily from L? Fourier theory.

Lemma 3 Let ¢ € LP if 1 < p < oo, and ¢ € W if p = oo. Assume that 3 jcz4 ¢(- —
4) = 0. Then for any function h on R? satisfying

[h(x)] < C(L+la)) ™" and  [h(z)=h(y)| < Cle—y| (1 + min(|z, [y]))™"", (4.14)

we have

lim 274
n—oo

> @2 ")b( — )

JEZL

U’:

Note that any Lipschitz function with compact support and any Schwartz function
satisfy (4.14).

Proof Here we only give the proof of the assertion for ¢ € £P,1 < p < 00, in detail.
The case ¢ € W when p = oo can be proved by similar arguments.
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By the Lebesgue dominated convergence theorem, for any € > 0 there exists Ny > 2

such that )
A\ P p
([ (3 ) an)” <
vel0:1] |7]>No

Set
¢1(z) = ¢(37)X0N0 () + > oz + 7)X[0,174 (),

171> No
where yp denotes the characteristic function of a set E, and Oy, = Ujjj<n,(j + [0, 1]%).
Thus Yjezi é1(- +J) = Ljeza ¢ +j) =0 and
N\P o, /P
lor—oller <2( [ (3 lote+))) dr) " < 2

d
0% 151> N

Therefore, using (2.4), (4.14), and the fact that supp ¢, C {z : |x| < Ny + d}, we get
12774 32 h(2 ") (8@ = §) = du(x = )l ev

jEZd
< 273 b2 ) 16— dillee < C,
jEZ4
and
—_n -n ; b
27t [ (S| R (- o+ )|) d
[O,I}d keZd jEZ‘i
—-n -n : —-n y b
< o [ (3| ()~ bR — G+ b)) da
01" yeza jeza
< 2Ny [ (T 042 Y e+ b)) de
014 % peza |j—k|<No+d
< 27RO (NG) (S0 (L + 27 E) 6B

kezd
< 27"C5(No)(l|9ller + 2€)” < (|| 2o + 2€)7€”,

when n > %ln (Cg(No)/G), where C;(Ny), i = 1,2, 3, are positive constants depending

only on Ny, d and the constant C' in (4.14). Hence the assertion follows for 1 < p < oo
and ¢ € LP. O

For p = oo the hypothesis ¢ € W in Lemma 3 cannot be weakened to ¢ € L, as
is shown by the following example.
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Example Let d =1, ¢(x) = xj0,11(%) — 52, Xoi4p-i,2-i+1(2) and h(z) = (1 +2%)~".
Obviously ¢ is in £ but not in W, and 3,z ¢(x — j) = 0. Set

gn(2) =27 h(27"k)p(z — k).

kEZ

Thus we get
gu(z + k) =27"(h(27"k) — h(27"k +2)), VkeZ, vec[27, 27

and
1
sup > gn(z+ k) >2" 3 |h27"k) = (2 "k + 1) > 10°

z€[0,1] gz 0<k<2n—2

This shows that ||g,||z=,n > 1, does not tend to zero as n tends to infinity.

5 Proofs

In this section, we shall give the proof of Theorem 1. We divide the proof into the
following steps: (v) = (iv) = (i) = (iii) = (v) and (iii) = (v) = (ii) =
(iii). The proofs of (i) = (iii) and (ii) = (iii) are the most difficult and technical
parts in our proof.

5.1 Proof of (v) =>(iv)
Let f=3o1 Zjeza(f, i(- — 7))¢i(- — j). Then using (2.2) we have

i f Dz P < A . i D S B P
o S ID e < IS4 =i hesslle < Bl

which is the right hand side of inequality (3.2) .
To prove the left hand side of inequality (3.2), we simply note that if f = > D; #’

i=1
¢; € V,(®), we have, using (2.3),

[ fllr = 1| D2 Di* ¢ille < C D || Ds|ev-
Pt =1

Taking the infimum on both sides of the inequality above, we obtain the left hand side
of inequality (3.2). O
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5.2 Proof of (iv) =>(i)

The implication (iv) = (i) follows from standard functional analytic arguments. We
include it here for the sake of completeness, which is a consequence of the following
general result.

Theorem 2 Let (X, ||-||x) and (Y, ||-||y) be two Banach spaces, and let T be a bounded
linear operator from X to Y. If there is a positive constant C' such that

C7lylly < inf llzllx < Cllylly ¥y € Ran(T),
then the range Ran(T') of T is closed.

Clearly Theorem 2 in turn follows from the following lemma.

Lemma 4 Let (X, || -]||x) be a Banach space, (Y, |- ||y) a normed linear space, and T
a bounded linear operator from X toY. Define

lyll = ylznjfx |z|lx V y € Ran(T).

Then (Ran(T), | - ||) is a Banach space.

Proof It is routine to check that | - || is a norm on Ran(T). Let y,,n > 1, be
a Cauchy sequence in Ran(7"). Without loss of generality, we assume that ||y,+1 —
yn|| < 27™. By the definition of the norm || - ||, there exists =, € X,n > 1, such

that Tx, = yp11 — yn and ||z,]|x < 27" for all n > 1. Since X is complete and
S ||znllx < oo, we have z = Y0°  x, € X and y; + T2z € Ran(T). Note that
ITz|| < ||z]|x for any z € X. Hence

o o0
Nyn — 1 — T2|| = H‘T(kz: xk)m < 1; |zellx =0 as n — oo.

=n

This leads to the assertion. O

5.3 Proof of (i)=(iii)

Let kg = mingcga rank(@(§+2k7r))kezd and let Q, = {¢ : rank(@(§+2k7r))kezd > ko}.
Then €, # R% By Lemma 1, it suffices to prove that Q, = (). Suppose on the contrary
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that Qg # 0. Then it suffices to construct a function G in the L? closure of V,(®)
such that G' cannot be written as Y./, ¢; ¥’ D; for some D; € 7,1 < i < r. Recall that
Q, is open set by (2.11). Then the boundary 0€, of €, is nonempty. Also for any

&o € 0k, rank(@({o + 2k7r))kezd = ko and

(Jnax rank(@(f + Qkﬂ))kezd >k V6>0.

As in the proof of Lemma 2, there exist a 7 x 7 matrix P, (£), § > 0 and K¢, C Z¢
with cardinality(K,) = ko such that P (§) is a 2m-periodic nonsingular matrix with
its entries in the Wiener class, and W, defined by

\112750(6)
satisfies
rank (W1 ¢, (& + 2kT) kere, = ko ¥ & € B(&,260), (5.1)
Uy e(Co+2km) =0 VkeZ9 (5.2)
Toe(E+2km) =0 YV ke K, €€ B(&,26),
and

Uyeo(€) 20 on B(&,6) + 2rZ¢ (5.4)

for all 0 < 6 < 26y. Since P () € WC and & € L (respectively & € W), we
have We € L (respectively ¥, € W). This together with (5.2) and the Poisson
summation formula lead to

S e DY, (4 f) = 0. (5.5)

jEZd
Let H be a nonnegative C* function satisfying (4.10), and let

Hog() = Y H(2"(E+2km —&)), n>2.

kezd
Define an operator T, ¢, from (¢7)" %0 to L? by
r—ko

Togy : (Dr,-- -y Drfko)T - Z (Va0 ¥ Hugo) ' Di,

=1
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where H,, ¢, denotes the sequence of the Fourier coefficients of the 27-periodic function
Hye, (&) and Wo gy = (ogo1y -+ Uogorio) .- By (2.3), (5.5) and Lemma 3 with taking
h = F~'H, we obtain

lim 1T, ¢]] = 0. (5.0

Let H(v) = H(2z)— H(8x) and define H, ¢, (€) = Ypeze H(2M(E+2kT—&))), n > 2.
Then for n > 4, we have

Hy gy (€) Hugo(§) = Hug, (€). (5.7)
Define an operator T, ¢, from (£7)"~*0 to LP by

r—ko

Tn,& : (D17 ceey D'rfko)T I Z (wQ,ﬁo,i *, ﬁn,fo) >I<, Di,
=1

where lfln,go denotes the sequence of Fourier coefficients of the 27-periodic function
Hy g (§). (From (5.6), (5.7), and the fact that |[H, ¢ (£)]|z < C for some positive

constant C' independent of n, it follows that ||T,¢ || < || Hogo(€)lletl| Tnell, and
lim [|Tyell = 0. (5.8)

By (5.4) and (5.6), there exists a subsequence n;,l > 1 such that n;4; > n; + 8,

5
IToeoll #0 and 3 (1T rell < 27" (5.9)
k=0

Let D,, € (7)"~* be chosen such that

1Dulle =1 and [T Dl o > 1T g0

1/2, (5.10)

and let D, (&) be the Fourier series having D, as its sequence of Fourier coefficients.
For sufficiently large [;, define G, s > [y, by

Gul6) = S U(Hueo(€) — Horpago(€)) Do (€ T (6)

I=ly

S (Hueo(6) — Honsseo(€)(0, Do(€)) P (€)B(6)

=l
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and G by
G(g) = Z l(Hnl,Eo(g) - Hnl+4,£0(£))Dnz (g)T@Q,fo(g)'

1=l
In fact, we only need 271 < §.

Now it remains to prove that G is in the L? closure of V,,(®) and that G cannot be
written as Y., , ¢; ¥ D; for some D; € P, 1 < i <r. ;From the construction of G5 and
G, Gy € V(@) for all s > [y, and

1G = Glr < 5 UF (Hueo€) = Huprago(©) Do (" T, (€))

[=s+1

r

< D WITsaell + 1T el

I=s+1
— 0 as s— o0,

where we have used (5.9). This shows that G is in the L? closure of V,(®).
Finally we prove that G ¢ V,(®). On the contrary, suppose that

G(&) = A () (5.11)

for some vector-valued 2r-periodic distribution A(¢€) € WCP. Note that supp G,(£) C
B(&,2 1) +27Z% for all s > [; and so is supp G(€). Hence we may assume that A(¢)
in (5.11) is supported in B(&y, &) + 27Z% when [; is chosen sufficiently large. Write
AT (P ()71 = (A1(9T, A2(§)T). Then we may write (5.11) as

A (g)T(I}l,ﬁo (6) = ( — A (g)T + lij: Z(Hnl,& (6) - Hn1+4,§0 (6))Dn1 (S)T) {1}2,50 (6) (5'12)

Since A;(¢) is a 2m-periodic distribution in WC? and supp A, (&) C B(&, &) + 27Z7,
it follows from (5.1), (5.3) and (5.12) that A;(£) = 0. Substituting this in (5.12),

AQ(S)T(I}Q,& (6) = i Z(Hnl,& (6) - an+4,§0 (6))Dnz (S)T(I}Q,ﬁo (6) (513)

=l

By direct computation, and using the fact that n;; > n; + 8, we have

Hoy0(€) (Hny 0(€) = Hupra0(6)) = { Hy,6(€) 5: ; ;
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Multiplying H,, ¢, (€) on both sides of (5.13),

~ ~ ~

Hy 60 (€) A2(€) W6, (€) = [Hu, 6 (€) Dy (€)T W (£).- (5.14)

By (5.10) and ||T},, ¢,|| # 0, we get

|77 (1 0 () D (&) T2, (0))], > U2

and

|77 (o () A2(6) W0 (©) |, < 1ol [142(6) 1

which contradicts (5.14). This completes the proof of (i) = (iii). O

5.4 Proof of (iii) = (v)
Let hy(€), Py(€) and Wy, be as in Lemma 2. Define

By(§) = H/\(é:)p/\(g)T< [\111,,\,\116,,\](5)_1 ? ) Py(§), (5.15)

where H, (&) is a 2m-periodic C* function such that Hy(£) = 1 on supp hy, and H) is
supported in B(ny, 63) + 27Z¢. Then By(§) € WC. Define ¥ = (¢y,...,%,)T by

= 3" n(&)BA)(©). (5.16)

AEA

Then U € L*if 1 <p<ooand ¥ € W if p=1,00. Now we start to prove (3.3) for
such a U. For any f € V,(®), define

g_zz fawl ¢l( )

i=1jcZd

Then it suffices to prove that f = ¢g. By the definition of the space V,(®), there exists
a 2m-periodic distribution A(£) € WCP such that f(¢) = A(§)T®(E). Therefore, by
(5.15), (5.16) and Lemma 2, we get

i&) = AQ", ‘T’]( )

NG

AEA

~

oee)
[, B BAETB(6)
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= > @ {A© P& "%

AEA

( [‘T’l,m‘g’l,x](f) 8 > ( [‘T’l,m@é,x](f)_l ? > ( @1,8(5) >}

- S @ e (@)

AEA

= A©T2(©) = f(©).
Similarly we can prove that f = 337 Y icza(f, ¢i(- — 7))¥i(- — j). This completes the
proof of (iii)=(v). O
5.5 Proof of (v) =(ii)
Let f =31 ¥jeza(f, ¢i(- — j))¢i(- — j). Then using (2.3) we get

1l < 0||{§<f, B — )} jezaller

which is the left hand side of inequality in (ii).
The right hand side of (ii) is a direct consequence of (2.2). O

5.6 Proof of (ii) = (iii)

Let kg = mingcgra rank(@(§+2k7r))kezd and let Qg = {¢: rank(@({—i—?/ﬁr))kezd > ko}.
By Lemma 1, it suffices to prove that €, = (). Suppose on the contrary that Q, # 0.
Let & € 0%y, U1gys Uoeos Pro(€), Hugo (€), Hpgo(€) and 6 be as in the proof of (i) =
(iii). Let ny be chosen such that 27" < ¢, and

() = W10, T16)(S0) + Hneo () ([Wreor V1) (€) — W1, U1,](60))

is nonsingular for all n > ng. The existence of ng follows from (5.1) and the continuity of
(W1 60, W1 g](€). Given any 27-periodic distribution F'(§) in WCP, define g, n > ng+1,
by

Gn(€) = Hogo (&) (= F() [Ty, Tre ) (§) (€)1, F(E)T) ( %?8 ) ‘
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Then g, € V,(®), and

(G U1.60) (€) o
- f{”vfo (g)( - F(g)T[(I}Q,ﬁm ‘:1}1,50](6)(0571(6))717 F(S)T) ({él’zm é??%iii)
-0 o (5.17)

by direct computation, where we have used (5.7) and the fact that v, (€) = [¥1¢,, U1.6,](€)
on the support of H, ¢. Thus by (2.2), (5.7), (5.17) and

we get

||[§n,3>](§) o
- (05 ) o7
< C)|[Gns Ha g Wag] (E)e

[gna ( {1}2’20 >] (6) p
< Ollgallw|F ™ (g (€) Vo g LN F ™ (Hig () Tary ()1 177. (5.18)

It follows from (2.3), (2.4), (5.5) and Lemma 3 that

Lim || F 1 (Ho o (€)oo ()| 2 I1F 1 (Hagy (€)W (€))7 77 =

n—oo

e

< C

This together with (5.18) leads to the existence of €,,n > ng, such that

1[n, ®1(6)

and lim,, .. €, = 0. On the other hand, by the assumption (ii) we have

130 91Oz = [{ [, 9ul@)@C=)da} _,,

Combining (5.19) and (5.20), there exists an integer n; > ny + 1 such that

1 (5.19)

> Clgallis. (520

g =0 VY n>mn.
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Thus for any 27-periodic distribution F(£) in WC? and n > ny,

Ho gy (O)F () oy, W1,6)(€) (€)W 65(€) = Hugg ()F(€) Wagy (€).

Hence
Hi g0 () [Wa,60, W1,6](€) (0 (€)) ™' W16 (&) = Hi () Wagy (€). (5.21)

This together with (5.1) and (5.3) lead to
Hi ([ 260, Urg5) () (0n(€) ™ =0V € € B(&o,27™)

and hence by 27-periodicity,

Ho 0 ()W, U1, (€) (00 (€)1 W1,(€) = 0V € € B(&,27™) + 272,

Substituting this into (5.21), and using the fact that (5.21) is valid for all n > ny we
obtain

\/I}Q,go(g) =0 on B(gg, 2—n1—2) + 27er,
which contradicts (5.4). This completes the proof of (ii)=-(iii). O
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